Mark scheme - Equilibrium

Question		Answer/Indicative content	Marks	Guidance
1	i	Pressure: Right-hand side has fewer (gaseous) moles OR 4 (gaseous) moles form 2 (gaseous) moles \checkmark High pressure \checkmark Temperature: (Forward) reaction is exothermic/ $\Delta \mathrm{H}$ is negative OR (Forward) reaction gives out heat \checkmark Low temperature \checkmark	(AO1.2) (AO2.1) (AO1.2) (AO2.1)	FULL ANNOTATIONS MUST BE USED ALLOW suitable alternatives for right-hand side, e.g.: towards $\mathrm{NH}_{3} /$ products OR forward direction OR increases yield For moles, ALLOW molecules/particles ALLOW reverse reaction is endothermic $/ \Delta \mathrm{H}$ is positive/takes in heat ORA for reverse reaction Examiner's Comments This question was answered well with many candidates being given all 4 marks. Most candidates identified that there are fewer gaseous moles of products and that an increase the pressure will shift the equilibrium position to the right. Although the exothermic nature of the forward reaction was usually identified, candidates sometimes muddled the temperature conditions required, with 'higher temperature' being seen often instead of 'low temperature'. Lower attaining candidates often seemed to confuse equilibrium (in this question) with rates.
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=2.86 \times 10^{-2}$ award 2 marks \qquad K_{c} expression $\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[H_{2}\right]^{3}} \text { OR } \frac{0.862^{2}}{1.25 \times 2.75^{3}} \begin{gathered} \text { OR } 0.02858 \ldots \ldots \end{gathered}$ Answer to 3 SF and in standard form $K c=2.86 \times 10^{-2} \checkmark$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.6 \times 2) \end{gathered}$	IF there is an alternative answer, check for any ECF credit possible using working below. ALLOW calculated value 0.02858291 correctly rounded to 3 or more SF for 1st marking point ALLOW ECF to 3 SF and standard form ONLY from inverted K_{c} expression $\rightarrow 3.50 \times$ 10^{1} DO NOT ALLOW $\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]+\left[\mathrm{H}_{2}\right]^{3}}$ $=0.0337$ (no marks)

3.2.3 Chemical Equilibrium

					IGNORE attempts at units Examiner's Comments Exemplar 5 This part discriminated well. Most candidates were able to write the correct expression for K_{c} as the starting point of the calculation. Candidates often got into a muddle in calculating K_{c}, perhaps due to issues inputting the calculation into their calculators. The question asked for 'an appropriate number of significant figures and in standard form'. As the provided data was all to 3 significant figures, this also indicates the required number of significant figures in the answer. A calculated value to 2 significant figures was often seen (see the response); also 0.0286 rather than the standard form: 2.86×10^{-2}. Some responses showed K_{c} inverted or added, rather than multiplying the two reactants in the denominator. Other candidates wrote the correct equilibrium expression but were then used 2.75^{2}, rather than 2.75^{3}, to obtain the standard form answer of 7.786×10^{-2} or 0.0786 with no standard form. Candidates are advised to check back through calculations to see if they have made any such errors.
			Total	6	
2	a		$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{NO}^{(\mathrm{g})]^{4}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]^{6}}\right.}{\left[\mathrm{NH}_{3}(\mathrm{~g})\right]^{4}\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{6}}$	1	Square brackets required IGNORE state symbols Examiner's Comments Generally, this question was well answered with only a small proportion of candidates adding the values together instead of multiplying.
	b		EQUILIBRIUM CONDITIONS Temperature: 1 mark (Forward) reaction is exothermic $/ \Delta H$ is negative OR (Forward) reaction gives out heat \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC

Pressure: 1 mark

Left-hand side has fewer (gaseous) moles

OR 9 (gaseous) moles form 10 (gaseous)
moles $\sqrt{ }$

OPTIMUM EQUILIBRIUM CONDITIONS: 1

mark

(for maximum yield of NO)
Low temperature AND low pressure \checkmark

RATE: 1 mark

Low temperature/pressure gives a slow rate/slower reaction so high temperatures / higher pressure needed to increase rate $\mathbf{O R}$ frequency of collisions \checkmark

INDUSTRIAL CONDITIONS / OPERATIONAL

 FACTORS: 1 markHigh pressure provides a safety risk
OR
Higher temperatures increase energy costs /
reduce yield / shift equilibrium to left
OR
(High) pressure is expensive (to generate) /
uses a lot of energy \checkmark

ALLOW reverse arguments

Answer MUST relate temp/pressure to rate / frequency of collisions

ALLOW Temperature / pressure not too high because yield reduced

IGNORE stated temperatures and pressures IGNORE catalyst

Examiner's Comments

Most candidates answered this question very well, with the most common mark being $4 / 5$. Many candidates put a lot of effort into explaining, in depth, Le Chatelier's principle, which was not required. The first three marking points were credited to most candidates. Responses were confident in their descriptions of equilibrium shifts and many candidates then went on to qualify their answers with operational factor considerations and/or rate. The explanation for pressure was described less commonly than temperature and many candidates did not appreciated that increased rate would lead to a decreased equilibrium yield.

Exemplar 3

(c) Predict the condiforis of tomperaturo and prossuro for a n niaximum. oquilibrium yield of

 tou temperature so as to shift the position of equilibrium to the right while forouring foward reaction. This is beccuse formard voation is extheimic ($\Delta t /=-v e$, low pressure so as to shift position of equibrium to The right, as a a decrease in pressure cluses the equilibhium to move towards He directron with more gas molecules (right) (xo These two conditions will Hininise the charig causec so maximum poduct (ie NO and $\mathrm{A}_{2} \mathrm{O}$ ave formed. A higher temperatwe is used so as to incease ithe rake of readien. (therure, reation is too sow. A slighty higner pressue is dso used to indease readion ralce but not too high presswe as it is dangennes and dosnot pwinote satety for workes.

This candidate scored all five marks for this well-reasoned approach to the question.

3.2.3 Chemical Equilibrium

3	i	Expression: $K_{c}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right](1)$ Calculation: $=(0.877)^{2} /(2.00)^{3}(1.20)(1)$	3	square brackets required allow from 1 sig fig up to calculator display correct answer alone scores all marks
		$=0.0801 \mathrm{~V}\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2}\right)$		
	ii	Catalyst: No effect, it only changes the rate of reaction (1) Higher temperature: Forward reaction is exothermic (1) so position of equilibrium moves to the left and there will be less NH_{3} (1)	3	
		Total	6	
4		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $14.6\left(\mathrm{dm}^{2} \mathrm{~mol}^{-6}\right)$ award 2 marks K_{c} expression $\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}} \text { OR } \frac{0.26}{0.31 \square 0.24^{2}}$ OR $14.56 \ldots \ldots$ Answer to 3 SF $14.6\left(\mathrm{dm}^{6} \mathrm{~mol}^{-2}\right) \checkmark$	2	FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible using working below. \qquad ALLOW calculated value 14.5609319 correctly rounded to 3 or more SF for 1st marking point ALLOW ECF to 3 SF ONLY from inverted K_{c} expression $\rightarrow 0.0687$ DO NOT ALLOW $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]+\left[\mathrm{H}_{2}\right]^{2}}=0.707$ (no marks) Examiner's Comments Most candidates were able to obtain a value of 14.56 using a correct K_{c} expression, but a significant number of candidates were unable to give their answer to an appropriate number of significant figures. Candidates should use the least accurate data provided, here three significant figures, and to indicate the appropriate number of significant figures in the final answer. Other common errors included the inverted K_{c} expressions and use of $[\mathrm{CO}]+\left[2 \mathrm{H}_{2}\right]$, rather than $[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}$, as the denominator. Answer $=14.6 \mathrm{dm}^{6} \mathrm{~mol}^{-2}$
		Total	2	

3.2.3 Chemical Equilibrium

				question as they will help form the basis from which to build a response.
b	i	Equilibrium (position) shifts to right AND turns paler (brown) \checkmark Right-hand side has fewer (gaseous) moles / molecules OR left-hand side has more (gaseous) moles / molecules \checkmark	2	ALLOW turns colourless IGNORE initially goes darker (brown) Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards $\mathrm{N}_{2} \mathrm{O}_{4}$ OR in forward direction OR favours the right IGNORE responses in terms of rate Examiner's Comments The effect of pressure on the position of an equilibrium is well known by candidates. Most were able to apply le Chatelier's principle accurately stating the equilibrium shifted to the right as that was the side with fewest moles of gas. However a significant proportion of the cohort did not comment on the effect on the appearance of the equilibrium mixture.
	ii	Equilibrium (position) shifts to left AND turns darker / deeper (brown) \checkmark (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat \checkmark	2	ALLOW turns brown Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards NO_{2} OR in reverse direction OR favours the left IGNORE comments about the 'exothermic side' or 'endothermic side' ALLOW 'equilibrium (position) shifts left AND in the endothermic direction' for second marking point IGNORE responses in terms of rate Examiner's Comments As with part (a)(i), candidates demonstrated an excellent grasp of le Chatelier's principle but it was only the most able candidates who referred to the appearance of the equilibrium mixture. Candidates should be encouraged to read questions carefully to ensure they include all the required information in their responses.
		Total	6	

3.2.3 Chemical Equilibrium

			K_{c} expression 1 mark $\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \text { OR } \frac{\left[\mathrm{SO}_{3}\right]^{2}}{2.00^{2} \times 1.20}$ Evaluation of $K_{c}\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right] 1$ mark $\begin{aligned} & \mathrm{Kc}\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]=0.160 \times 2.00^{2} \times 1.20 \\ & =0.768 \checkmark \end{aligned}$ Calculation of [SO_{3}] ONLY available from correct evaluation for 2nd mark $\begin{aligned} & {\left[\mathrm{SO}_{3}\right]=\sqrt{ }\left(0.160 \times 2.00^{2} \times 1.20\right)} \\ & =0.876\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \end{aligned}$		Square brackets required in K_{c} expression ALLOW ECF from $\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$, i.e. no $\left[\mathrm{SO}_{3}\right]^{2}$ ALLOW 0.77 (2 SF) ALLOW 0.88 (2 SF) up to calculator value of 0.876356092 correctly rounded IF K_{c} expression is inverted 2 nd and 3 rd marks are available by ECF: $\left[\mathrm{SO}_{3}\right]^{2}=\frac{2.00^{2} \times 1.20}{0.160}$ OR $30 \checkmark$ $\left[\mathrm{SO}_{3}\right]=\sqrt{ } 30=5.48 \mathrm{OR} 5.5 \checkmark$ Any other K_{c} expression \rightarrow NO MARKS, e.g. $\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}+\left[\mathrm{O}_{2}\right]} \rightarrow \sqrt{ } 0.832 \rightarrow 0.912$ NO Marks Examiner's Comments Given that K_{c} is new to AS level in the reformed specification, this part was attempted well. However, writing a correct K_{c} did cause problems for weaker candidates, who sometimes inverted the expression, used the + sign from the equation, obtaining a denominator of $\left[\mathrm{SO}_{2}\right]^{2}+\left[\mathrm{O}_{2}\right]$, or omitted the square from $\left[\mathrm{SO}_{2}\right]^{2}$ and $\left[\mathrm{SO}_{3}\right]^{2}$. Some excellent answers were seen and this part differentiated very well between candidates of different abilities. Answer: $\left[\mathrm{SO}_{3}\right]=0.876 \mathrm{~mol} \mathrm{dm}^{-3}$
			Total	9	
7	a		The (position of a dynamic) equilibrium shifts to minimise (the effect of) any change \checkmark	1	ALLOW suitable alternatives for 'shifts' and 'minimises' IGNORE 'reaction shifts' Examiner's Comments Most candidates were able to describe le Chatelier's principle.
	b	i	Pressure: Right-hand side has fewer (gaseous) moles / molecules OR left-hand side has more (gaseous) moles / molecules \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW fewer atoms on right-hand side OR more atoms on left-hand side.

3.2.3 Chemical Equilibrium

3.2.3 Chemical Equilibrium

			Total	4	
9			* Please refer to the marking instruction point 10 for guidance on how to mark this question. (Level 3) All/most points covered and clearly linked. Must have points taken across all of the headings in the indicative points for Level 3. The explanations show a well-developed line of reasoning linked to appropriate suggestions which is clear and logically structured. The compromises are relevant and well thought out and clearly linked to the explanations. (5-6 marks) (Level 2) Suggests correct conditions with explanations OR comments on compromises with reference to yield AND rate effect. The explanations are linked to appropriate suggestions and show a line of reasoning with some structure. The compromises are relevant but may not be clearly linked to the explanation. (3-4 marks) (Level 1) Comments on conditions with some explanation OR comments on compromise with reference to yield OR rate. The comments about yield / rate with explanation are basic and communicated in an unstructured way. The compromises may not be relevant with lack of reasoning. (1-2 marks) No response or no response worthy of credit.	6	Indicative scientific points may include Yield - Increasing pressure increases yield of SO_{3} - Decreasing temperature increases yield of SO_{3} Explanation - (pressure) more moles / molecules on the reactant side ORA - (temp.) the forward reaction is exothermic ORA Rate - Increasing pressure increases rate - Increasing temperature increases rate Compromise - Choose a higher temperature which creates a reduced yield but in a shorter space of time ignore reference to increase pressure leading to safety / cost issues
			Total	6	
10	a	i	$K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}}$	1	
		ii	$\left[\mathrm{CH}_{3} \mathrm{OH}\right]=14.6 \times\left(3.10 \times 10^{-3}\right) \times\left(2.40 \times 10^{-3}\right)^{2}$ (1) $=2.61 \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)(1)$	2	
	b	i	Yield decreases AND Equilibrium (position) has moved to the left	1	allow moved towards reactants OR moved towards CO and H_{2}

3.2.3 Chemical Equilibrium

		Oxidised ii Nitrogen AND -3 AND +2 (1) Reduced Oxygen AND 0 AND -2 (1)	2	
	Total	6		

